Numerical Simulation of a Pitching Airfoil Under Dynamic Stall of Low Reynolds Number Flow
نویسندگان
چکیده
منابع مشابه
An Experimental Study of Stall Hysteresis of a Low-Reynolds-Number Airfoil
An experimental study was conducted to investigate static stall hysteresis of a NASA GA(W)-1 airfoil at the chord Reynolds number of Re = 162,000. In addition to mapping the surface pressure distribution around the airfoil, a digital PIV system was used to make detailed flowfield measurements to quantify the occurrence and behavior of laminar boundary layer separation and transition on the airf...
متن کاملAerodynamics of Low Reynolds Number Plunging Airfoil under Gusty Environment
Abstract It is known that plunging airfoil can produce both lift and thrust with certain combination of plunging amplitude and frequency. Motivated by our interest in micro air vehicles (MAVs), we utilize a NavierStokes equation solver to investigate the aerodynamics of a flapping airfoil. The roles of the plunging and pitching amplitude and frequency, and Strouhal number are studied. For a sym...
متن کاملTurbulence Modelling of Deep Dynamic Stall at Low Reynolds Number
The unsteady separated turbulent flow around an oscillating airfoil pitching in a sinusoidal pattern in the regime of low Reynolds number is investigated numerically employing the URANS approach with two advanced turbulence models, namely the RNG kmode and Transition SST model, and the DES approach based on the SST kmodel. A comparison with experimental data shows that the SST kbased D...
متن کاملNumerical Simulation of a Pitching Naca 0012 Airfoil
This paper describes the application of the noncommercial CFD-code FLOWer to the problem of a sinusoidally pitching NACA 0012 airfoil with high amplitude and reduced frequency under incompressible flow conditions. As FLOWer allows the approximate solution of the nonlinear conservation laws governing viscous fluid flow, i. e. the Navier-Stokes equations, a numerical investigation of the unsteady...
متن کاملDirect Numerical Simulation of Separated Low-Reynolds Number Flows around an Eppler 387 Airfoil
Low Reynolds number aerodynamics is important for various applications including micro-aerial vehicles, sailplanes, leading edge control devices, high-altitude unmanned vehicles, wind turbines and propellers. These flows are generally characterized by the presence of laminar separation bubbles. These bubbles are generally unsteady and have a significant effect on the overall resulting aerodynam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Aerospace Technology and Management
سال: 2019
ISSN: 2175-9146
DOI: 10.5028/jatm.v11.1076